🔧 System Components¶
Core Components Overview¶
The self-healing infrastructure consists of several key components that work together to provide a resilient, automated system.
Component Architecture¶
graph TB
subgraph "Infrastructure Layer"
TF[Terraform]
K8S[Kubernetes]
STOR[Storage]
end
subgraph "Platform Layer"
MON[Monitoring]
LOG[Logging]
SEC[Security]
end
subgraph "Application Layer"
APP[Applications]
CHAOS[Chaos Engine]
HEAL[Self-Healing]
end
subgraph "Integration Layer"
CI[CI/CD]
API[APIs]
WEB[Web UI]
end
TF --> K8S
K8S --> MON
K8S --> LOG
K8S --> SEC
K8S --> APP
K8S --> CHAOS
K8S --> HEAL
CI --> K8S
API --> APP
WEB --> MON
1. Infrastructure Components¶
Terraform Infrastructure¶
Purpose: Infrastructure as Code for provisioning and managing cloud resources
Key Features: - Declarative infrastructure definition - Version-controlled infrastructure changes - Automated resource provisioning - Cost optimization and management
Configuration:
# Infrastructure modules
module "kubernetes_cluster" {
source = "./modules/kubernetes"
cluster_name = "self-healing-cluster"
node_count = 3
node_type = "t3.medium"
tags = {
Environment = "production"
Project = "self-healing-infrastructure"
}
}
module "monitoring_stack" {
source = "./modules/monitoring"
prometheus_retention = "15d"
grafana_admin_password = var.grafana_password
depends_on = [module.kubernetes_cluster]
}
Kubernetes Cluster¶
Purpose: Container orchestration and management platform
Components: - Control Plane: API server, scheduler, controller manager - Worker Nodes: Application pods and workloads - etcd: Distributed key-value store - kubelet: Node agent for pod management
Configuration:
# Cluster configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: cluster-config
namespace: kube-system
data:
cluster-name: "self-healing-cluster"
environment: "production"
auto-scaling: "enabled"
monitoring: "enabled"
2. Monitoring Components¶
Prometheus¶
Purpose: Metrics collection, storage, and querying
Features: - Time-series database - Powerful query language (PromQL) - Service discovery - Alerting rules
Configuration:
# Prometheus configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-config
namespace: monitoring
data:
prometheus.yml: |
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
Grafana¶
Purpose: Data visualization and dashboard creation
Features: - Rich dashboard creation - Multiple data source support - Alerting and notifications - User management
Dashboards: - Cluster Overview: Node status, resource usage - Application Metrics: Response times, error rates - Infrastructure Health: System performance - Chaos Engineering: Experiment results
AlertManager¶
Purpose: Alert routing and notification management
Features: - Alert deduplication - Grouping and routing - Multiple notification channels - Silence management
Configuration:
# AlertManager configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: alertmanager-config
namespace: monitoring
data:
alertmanager.yml: |
global:
slack_api_url: 'https://hooks.slack.com/services/YOUR/SLACK/WEBHOOK'
route:
group_by: ['alertname']
group_wait: 10s
group_interval: 10s
repeat_interval: 1h
receiver: 'slack-notifications'
receivers:
- name: 'slack-notifications'
slack_configs:
- channel: '#alerts'
title: '{{ template "slack.title" . }}'
text: '{{ template "slack.text" . }}'
3. Self-Healing Components¶
Self-Healing Controller¶
Purpose: Automated failure detection and recovery
Core Logic:
class SelfHealingController:
def __init__(self):
self.health_check_interval = 30
self.node_failure_threshold = 3
self.pod_restart_threshold = 5
self.slack_webhook = os.getenv('SLACK_WEBHOOK_URL')
def monitor_cluster(self):
"""Monitor cluster health and trigger recovery actions"""
while True:
try:
# Check node health
self.check_node_health()
# Check pod health
self.check_pod_health()
# Check service health
self.check_service_health()
time.sleep(self.health_check_interval)
except Exception as e:
self.send_alert(f"Monitoring error: {e}")
def check_node_health(self):
"""Check node status and trigger recovery if needed"""
nodes = self.k8s_client.list_node()
for node in nodes.items:
if node.status.conditions:
for condition in node.status.conditions:
if condition.type == "Ready" and condition.status == "False":
self.handle_node_failure(node)
def handle_node_failure(self, node):
"""Handle node failure by cordoning and draining"""
try:
# Cordon the node
self.k8s_client.patch_node(
name=node.metadata.name,
body={"spec": {"unschedulable": True}}
)
# Drain the node
self.drain_node(node.metadata.name)
# Send notification
self.send_alert(f"Node {node.metadata.name} has been cordoned and drained")
except Exception as e:
self.send_alert(f"Failed to handle node failure: {e}")
Health Check Service¶
Purpose: Comprehensive health monitoring
Health Checks: - Liveness Probes: Application responsiveness - Readiness Probes: Service availability - Startup Probes: Application startup status
Configuration:
# Health check configuration
apiVersion: apps/v1
kind: Deployment
metadata:
name: health-check-service
spec:
template:
spec:
containers:
- name: app
image: my-app:latest
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /ready
port: 8080
initialDelaySeconds: 5
periodSeconds: 5
startupProbe:
httpGet:
path: /startup
port: 8080
failureThreshold: 30
periodSeconds: 10
4. Chaos Engineering Components¶
Chaos Mesh¶
Purpose: Chaos engineering platform for failure injection
Experiment Types: - Pod Chaos: Pod failure, pod kill - Network Chaos: Network delay, network loss - IO Chaos: IO delay, IO error - Kernel Chaos: Kernel panic, memory corruption
Configuration:
# Chaos experiment configuration
apiVersion: chaos-mesh.org/v1alpha1
kind: PodChaos
metadata:
name: pod-failure-experiment
spec:
action: pod-failure
mode: one
selector:
namespaces: [default]
labelSelectors:
app: test-app
duration: 30s
scheduler:
cron: "@every 10m"
Chaos Dashboard¶
Purpose: Visualize and manage chaos experiments
Features: - Experiment scheduling - Real-time monitoring - Result analysis - Experiment history
5. CI/CD Components¶
GitHub Actions¶
Purpose: Automated build, test, and deployment pipeline
Workflow Stages: 1. Build: Compile and package applications 2. Test: Run unit and integration tests 3. Security Scan: Vulnerability scanning 4. Deploy: Automated deployment to environments
Configuration:
# GitHub Actions workflow
name: CI/CD Pipeline
on:
push:
branches: [main]
pull_request:
branches: [main]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Build application
run: |
docker build -t my-app:${{ github.sha }} .
docker push my-app:${{ github.sha }}
test:
runs-on: ubuntu-latest
needs: build
steps:
- name: Run tests
run: |
kubectl apply -f kubernetes/test-app/
kubectl wait --for=condition=ready pod -l app=test-app
kubectl exec test-app -- npm test
deploy:
runs-on: ubuntu-latest
needs: [build, test]
steps:
- name: Deploy to production
run: |
kubectl set image deployment/my-app my-app=my-app:${{ github.sha }}
kubectl rollout status deployment/my-app
6. Security Components¶
RBAC (Role-Based Access Control)¶
Purpose: Fine-grained access control
Configuration:
# RBAC configuration
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: self-healing-role
rules:
- apiGroups: [""]
resources: ["pods", "nodes", "services"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]
- apiGroups: ["apps"]
resources: ["deployments", "replicasets"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]
Network Policies¶
Purpose: Micro-segmentation and network security
Configuration:
# Network policy
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: default-deny
namespace: default
spec:
pod_selector: {}
policy_types:
- Ingress
- Egress
Secrets Management¶
Purpose: Secure credential and secret storage
Configuration:
# Secret configuration
apiVersion: v1
kind: Secret
metadata:
name: app-secrets
type: Opaque
data:
database-url: <base64-encoded-url>
api-key: <base64-encoded-key>
Component Interactions¶
Data Flow¶
- Monitoring: Prometheus collects metrics from all components
- Analysis: Self-healing controller analyzes metrics for anomalies
- Detection: Failures are detected through health checks and metrics
- Recovery: Automated recovery actions are triggered
- Notification: Alerts are sent via Slack/email
- Documentation: All actions are logged for audit
Event Handling¶
- Node Failure: Cordon, drain, and replace node
- Pod Crash: Restart pod or scale deployment
- Service Unavailable: Restart service or failover
- Resource Exhaustion: Scale resources or migrate workloads
Performance Characteristics¶
Scalability¶
- Horizontal Scaling: Auto-scaling based on metrics
- Vertical Scaling: Resource limits and requests
- Load Balancing: Service mesh for traffic distribution
Reliability¶
- High Availability: Multi-zone deployment
- Fault Tolerance: Redundant components
- Disaster Recovery: Backup and restore procedures
Monitoring¶
- Real-time Metrics: Sub-second metric collection
- Alerting: Proactive issue detection
- Logging: Comprehensive audit trails