🔄 Self-Healing Logic¶
Overview¶
The self-healing system is designed to automatically detect and recover from various types of failures in the Kubernetes cluster. It operates continuously, monitoring the cluster state and taking proactive actions to maintain system health.
Core Principles¶
1. Proactive Monitoring¶
- Continuous Health Checks: Regular monitoring of all cluster components
- Early Detection: Identify issues before they impact users
- Predictive Analysis: Use metrics to predict potential failures
2. Automated Recovery¶
- Immediate Response: Quick recovery actions for critical failures
- Gradual Escalation: Progressive recovery strategies
- Fallback Mechanisms: Multiple recovery options for complex failures
3. Minimal Disruption¶
- Rolling Updates: Zero-downtime deployments
- Graceful Degradation: Maintain service with reduced functionality
- User Experience: Prioritize user-facing service availability
Architecture¶
graph TB
subgraph "Monitoring Layer"
HC[Health Checks]
MET[Metrics Collection]
LOG[Log Analysis]
end
subgraph "Analysis Layer"
DET[Failure Detection]
PRI[Priority Assessment]
PLAN[Recovery Planning]
end
subgraph "Action Layer"
EXE[Action Execution]
VER[Verification]
NOT[Notifications]
end
HC --> DET
MET --> DET
LOG --> DET
DET --> PRI
PRI --> PLAN
PLAN --> EXE
EXE --> VER
VER --> NOT
Health Check Types¶
1. Node Health Checks¶
def check_node_health(self):
"""Monitor node status and health"""
nodes = self.k8s_client.list_node()
for node in nodes.items:
# Check node conditions
for condition in node.status.conditions:
if condition.type == "Ready" and condition.status == "False":
self.handle_node_failure(node)
if condition.type == "MemoryPressure" and condition.status == "True":
self.handle_memory_pressure(node)
if condition.type == "DiskPressure" and condition.status == "True":
self.handle_disk_pressure(node)
2. Pod Health Checks¶
def check_pod_health(self):
"""Monitor pod status and restart counts"""
pods = self.k8s_client.list_pod_for_all_namespaces()
for pod in pods.items:
# Check pod phase
if pod.status.phase == "Failed":
self.handle_pod_failure(pod)
# Check restart count
for container in pod.status.container_statuses:
if container.restart_count > self.pod_restart_threshold:
self.handle_pod_restart_failure(pod, container)
# Check readiness
if not pod.status.ready:
self.handle_pod_not_ready(pod)
3. Service Health Checks¶
def check_service_health(self):
"""Monitor service availability and endpoints"""
services = self.k8s_client.list_service_for_all_namespaces()
for service in services.items:
# Check if service has endpoints
endpoints = self.k8s_client.read_namespaced_endpoints(
name=service.metadata.name,
namespace=service.metadata.namespace
)
if not endpoints.subsets or not endpoints.subsets[0].addresses:
self.handle_service_no_endpoints(service)
# Check service connectivity
if not self.test_service_connectivity(service):
self.handle_service_connectivity_issue(service)
Failure Detection Logic¶
1. Pattern Recognition¶
def detect_failure_patterns(self):
"""Identify common failure patterns"""
patterns = {
'cascading_failure': self.detect_cascading_failure(),
'resource_exhaustion': self.detect_resource_exhaustion(),
'network_partition': self.detect_network_partition(),
'storage_issues': self.detect_storage_issues()
}
for pattern_name, detected in patterns.items():
if detected:
self.handle_failure_pattern(pattern_name)
2. Threshold Monitoring¶
def monitor_thresholds(self):
"""Monitor resource and performance thresholds"""
thresholds = {
'cpu_usage': 80, # percentage
'memory_usage': 85, # percentage
'disk_usage': 90, # percentage
'response_time': 1000, # milliseconds
'error_rate': 5 # percentage
}
for metric, threshold in thresholds.items():
current_value = self.get_current_metric(metric)
if current_value > threshold:
self.handle_threshold_exceeded(metric, current_value, threshold)
3. Anomaly Detection¶
def detect_anomalies(self):
"""Detect unusual patterns in metrics"""
metrics = self.get_historical_metrics()
for metric_name, values in metrics.items():
# Calculate baseline
baseline = self.calculate_baseline(values)
# Detect anomalies
current_value = values[-1]
if self.is_anomaly(current_value, baseline):
self.handle_anomaly(metric_name, current_value, baseline)
Recovery Actions¶
1. Node Recovery¶
def handle_node_failure(self, node):
"""Handle node failure recovery"""
try:
# Step 1: Cordon the node
self.cordon_node(node.metadata.name)
# Step 2: Drain the node
self.drain_node(node.metadata.name)
# Step 3: Check if node can be recovered
if self.can_recover_node(node):
self.recover_node(node)
else:
# Step 4: Replace the node
self.replace_node(node)
# Step 5: Verify recovery
self.verify_node_recovery(node)
except Exception as e:
self.send_alert(f"Node recovery failed: {e}")
self.escalate_node_failure(node)
2. Pod Recovery¶
def handle_pod_failure(self, pod):
"""Handle pod failure recovery"""
try:
# Step 1: Analyze failure reason
reason = self.analyze_pod_failure(pod)
# Step 2: Choose recovery strategy
if reason == "OOMKilled":
self.handle_oom_failure(pod)
elif reason == "CrashLoopBackOff":
self.handle_crash_loop(pod)
elif reason == "ImagePullBackOff":
self.handle_image_pull_failure(pod)
else:
self.handle_generic_pod_failure(pod)
# Step 3: Verify recovery
self.verify_pod_recovery(pod)
except Exception as e:
self.send_alert(f"Pod recovery failed: {e}")
self.escalate_pod_failure(pod)
3. Service Recovery¶
def handle_service_failure(self, service):
"""Handle service failure recovery"""
try:
# Step 1: Check service dependencies
dependencies = self.get_service_dependencies(service)
# Step 2: Verify dependencies are healthy
for dep in dependencies:
if not self.is_service_healthy(dep):
self.recover_service(dep)
# Step 3: Restart service if needed
if not self.is_service_healthy(service):
self.restart_service(service)
# Step 4: Verify service recovery
self.verify_service_recovery(service)
except Exception as e:
self.send_alert(f"Service recovery failed: {e}")
self.escalate_service_failure(service)
Recovery Strategies¶
1. Restart Strategy¶
def restart_strategy(self, resource):
"""Implement restart strategy for failed resources"""
max_restarts = 3
restart_delay = 30 # seconds
for attempt in range(max_restarts):
try:
self.restart_resource(resource)
time.sleep(restart_delay)
if self.is_resource_healthy(resource):
return True
except Exception as e:
self.log_error(f"Restart attempt {attempt + 1} failed: {e}")
return False
2. Scaling Strategy¶
def scaling_strategy(self, deployment):
"""Implement scaling strategy for resource issues"""
current_replicas = deployment.spec.replicas
max_replicas = 10
# Scale up if under load
if self.is_under_load(deployment):
new_replicas = min(current_replicas * 2, max_replicas)
self.scale_deployment(deployment, new_replicas)
# Scale down if over-provisioned
elif self.is_over_provisioned(deployment):
new_replicas = max(current_replicas // 2, 1)
self.scale_deployment(deployment, new_replicas)
3. Failover Strategy¶
def failover_strategy(self, service):
"""Implement failover strategy for critical services"""
# Check primary instance
if not self.is_primary_healthy(service):
# Switch to secondary
self.switch_to_secondary(service)
# Start recovery of primary
self.recover_primary(service)
# Switch back when primary is ready
if self.is_primary_healthy(service):
self.switch_to_primary(service)
Verification and Validation¶
1. Health Verification¶
def verify_recovery(self, resource):
"""Verify that recovery was successful"""
verification_steps = [
self.verify_resource_status,
self.verify_resource_connectivity,
self.verify_resource_performance,
self.verify_resource_dependencies
]
for step in verification_steps:
if not step(resource):
return False
return True
2. Performance Validation¶
def validate_performance(self, resource):
"""Validate performance after recovery"""
metrics = self.get_performance_metrics(resource)
# Check response time
if metrics['response_time'] > self.performance_thresholds['response_time']:
return False
# Check throughput
if metrics['throughput'] < self.performance_thresholds['throughput']:
return False
# Check error rate
if metrics['error_rate'] > self.performance_thresholds['error_rate']:
return False
return True
Notification System¶
1. Alert Levels¶
def send_alert(self, message, level="info"):
"""Send alerts based on severity level"""
alert_configs = {
"info": {
"slack_channel": "#monitoring",
"email_recipients": ["team@company.com"]
},
"warning": {
"slack_channel": "#alerts",
"email_recipients": ["oncall@company.com"]
},
"critical": {
"slack_channel": "#incidents",
"email_recipients": ["emergency@company.com"],
"pagerduty": True
}
}
config = alert_configs.get(level, alert_configs["info"])
# Send Slack notification
self.send_slack_notification(message, config["slack_channel"])
# Send email notification
self.send_email_notification(message, config["email_recipients"])
# Send PagerDuty alert for critical issues
if level == "critical" and config.get("pagerduty"):
self.send_pagerduty_alert(message)
2. Escalation Procedures¶
def escalate_issue(self, issue, level=1):
"""Escalate issues that cannot be automatically resolved"""
escalation_configs = {
1: {
"timeout": 300, # 5 minutes
"notify": ["oncall@company.com"]
},
2: {
"timeout": 900, # 15 minutes
"notify": ["manager@company.com"]
},
3: {
"timeout": 1800, # 30 minutes
"notify": ["director@company.com"]
}
}
config = escalation_configs.get(level, escalation_configs[3])
# Set escalation timer
self.set_escalation_timer(issue, config["timeout"])
# Send escalation notification
self.send_escalation_notification(issue, config["notify"])
Configuration Management¶
1. Dynamic Configuration¶
def load_configuration(self):
"""Load configuration from ConfigMap"""
config_map = self.k8s_client.read_namespaced_config_map(
name="self-healing-config",
namespace="self-healing"
)
self.config = {
"health_check_interval": int(config_map.data.get("health_check_interval", "30")),
"node_failure_threshold": int(config_map.data.get("node_failure_threshold", "3")),
"pod_restart_threshold": int(config_map.data.get("pod_restart_threshold", "5")),
"recovery_timeout": int(config_map.data.get("recovery_timeout", "300")),
"notification_enabled": config_map.data.get("notification_enabled", "true").lower() == "true"
}
2. Configuration Validation¶
def validate_configuration(self, config):
"""Validate configuration parameters"""
validation_rules = {
"health_check_interval": lambda x: 10 <= x <= 300,
"node_failure_threshold": lambda x: 1 <= x <= 10,
"pod_restart_threshold": lambda x: 1 <= x <= 20,
"recovery_timeout": lambda x: 60 <= x <= 1800
}
for param, rule in validation_rules.items():
if param in config and not rule(config[param]):
raise ValueError(f"Invalid configuration for {param}: {config[param]}")
Performance Optimization¶
1. Efficient Monitoring¶
def optimize_monitoring(self):
"""Optimize monitoring for performance"""
# Use efficient API calls
self.use_field_selectors()
self.use_label_selectors()
# Implement caching
self.cache_node_info()
self.cache_pod_info()
# Use watch API for real-time updates
self.use_watch_api()
2. Resource Management¶
def manage_resources(self):
"""Manage controller resources efficiently"""
# Limit concurrent operations
self.limit_concurrent_operations(10)
# Implement rate limiting
self.implement_rate_limiting()
# Use connection pooling
self.use_connection_pooling()
Testing and Validation¶
1. Unit Tests¶
def test_health_check(self):
"""Test health check functionality"""
# Mock Kubernetes API
mock_k8s = MockKubernetesAPI()
# Test node health check
result = self.check_node_health(mock_k8s)
assert result is not None
# Test pod health check
result = self.check_pod_health(mock_k8s)
assert result is not None
2. Integration Tests¶
def test_recovery_workflow(self):
"""Test complete recovery workflow"""
# Create test scenario
scenario = self.create_test_scenario()
# Execute recovery
result = self.execute_recovery(scenario)
# Verify results
assert result.success
assert result.recovery_time < 300 # 5 minutes
assert result.verification_passed
Monitoring and Metrics¶
1. Key Metrics¶
- Recovery Time: Time to recover from failures
- Success Rate: Percentage of successful recoveries
- False Positives: Incorrect failure detections
- Resource Usage: CPU and memory consumption
2. Dashboards¶
- Recovery Dashboard: Real-time recovery status
- Performance Dashboard: System performance metrics
- Alert Dashboard: Active alerts and notifications
- History Dashboard: Historical recovery data